
Patrick LeGresley

plegresley@nvidia.com

High Performance Computing with CUDA

Dresden, Germany
June 16, 2008

Challenging Problems in CFD

Computational Requirements for a Jet Engine Simulation

•! Entire engine geometry (full wheel):
 - Extremely large computational grids (about 1 billion cells)

 - Using 50,000 CPUs, the computational time is about 14 days for each

 flow-through time

•! Reduced model:
 - 20o sector (by scaling the blade counts) ~ 75 millions cells

 - Coarser grid ~ 16 millions cells

 - Using 1000 CPUs (ALC), the computational time is about 10 days

 - Reduced storage requirements ~ 5 TB

Source: Center for Integrated Turbulence Simulations (CITS), Stanford University

Parallel Scaling of SUmb on Red Storm

•! Solves the Unsteady Reynolds-Averaged Navier-

Stokes (URANS) equations via a finite difference

formulation on massively parallel platforms

•! Uses multi-block meshes

which are a hybrid

approach that uses

blocks of structured

meshes linked in an

unstructured fashion

Navier-Stokes Stanford University Solver (NSSUS)

Multi-block structured mesh

x

y

i

j

i

j

i
j

i,j

i,j+1

Unstructured mesh

x

y

Element Connectivity

Edge Connectivity

•! 1st to 6th order finite difference operators

•! Boundary conditions are implemented using

penalty terms based on Summation By Parts

(SBP) / Simultaneous Approximation Terms (SAT)

approach

•! Geometric multigrid with support for irregular

coarsening of meshes

NSSUS

•! GPU work has initially focused on the Euler

Equations, which come about if the viscous and

heat transfer terms are neglected

•! System of non-linear PDEs:

!

"W

"t
+
"E

"x
+
"F

"y
+
"G

"z
= 0

!

W =

"

"u

"v

"w

"E

$

%
% %

&

%
%
%

'

(

%
% %

)

%
%
%

!

E =

"u

"u2 + p

"uv

"uw

"uH

$

%
% %

&

%
%
%

'

(

%
% %

)

%
%
%

!

F =

"v

"uv

"v 2 + p

"vw

"vH

$

%
% %

&

%
%
%

'

(

%
% %

)

%
%
%

!

G =

"w

"uw

"vw

"w2
+ p

"wH

$

%
% %

&

%
%
%

'

(

%
% %

)

%
%
%

!

H = E +
p

"

!

p = (" #1)$ E #
1

2
(u

2
+ v

2
+ w

2
)

%

& '
(

) *

Euler Equations

•! For the finite difference discretization a coordinate

transformation is made to yield:

!

"W

"t
+
"E

"#
+
"F

"$
+
"G

"%
= 0

!

W =
W

J

!

E =
1

J
"xE + "yF + "zG()

!

F =
1

J
"xE +"yF +"zG()

!

G =
1

J
" xE + " yF + " zG()

and J is the coordinate transformation Jacobian

•! The spatial operators are discretized to generate a

system of ODEs for each and every node in the

mesh:

!

d

dt

Wijk

Jijk

"

$ $

%

&
' ' + Rijk = 0

Euler Equations (cont.)

•! An explicit five-stage Runge Kutta scheme is used to
advance the equations to a steady state

•! Computing the residual R is the main computational cost
and includes the inviscid Euler fluxes, the artificial
dissipation for stability, and the penalty state and penalty
terms for the boundary terms

Euler Equations (cont.)

•! The idea is to port the existing CPU implementation of
NSSUS to the GPU:

•! Approximately 200,000 lines of Fortran source code

•! Most of the lines of code (> 75%) are not
performance critical or not amenable to the GPU

•! Preprocessing

•! MPI Communication

•! Postprocessing

Porting NSSUS to the GPU

•! Classification of the kernel types:
–! Pointwise: All of the memory accesses, possibly from many

different arrays, are at the same location as the output. For
example, computing the momentum from the density and
velocity.

–! Stencil: Spatially local data is required, typically one or two
neighbors in each direction. This data may or may not be
contiguous in memory depending on the direction. Difference
approximations and multigrid transfer operators are examples
of this type of access.

–! Unstructured gather: Outputs gather from arbitrary locations
in memory. This occurs when exchanging data used for
computing block to block penalty terms.

–! Reductions: Outputs a single scalar by performing a
commutative operation on an array of data. Used to monitor
the convergence of the solution.

Mapping Algorithms to the GPU

Simplified Inviscid Time Step Calculation

do k=1,kl!

 do j=1,jl!

 do i=1,il!
 cc2 = gamma(i,j,k)*w(i,j,k,ip)/w(i,j,k,irho)!

 cc2 = max(cc2,clim2)!

 dt(i,j,k) = abs(w(i,j,k,ivx)*dxi (i,j,k,1) &!

 + w(i,j,k,ivy)*dxi (i,j,k,2) &!

 + w(i,j,k,ivz)*dxi (i,j,k,3)) &!
 + abs(w(i,j,k,ivx)*deta (i,j,k,1) &!

 + w(i,j,k,ivy)*deta (i,j,k,2) &!

 + w(i,j,k,ivz)*deta (i,j,k,3)) &!

 + abs(w(i,j,k,ivx)*dzeta(i,j,k,1) &!

 + w(i,j,k,ivy)*dzeta(i,j,k,2) &!
 + w(i,j,k,ivz)*dzeta(i,j,k,3)) &!

 + sqrt(cc2*(dxi (i,j,k,1)**2 &!

 + dxi (i,j,k,2)**2 &!

 + dxi (i,j,k,3)**2)) &!

 + sqrt(cc2*(deta (i,j,k,1)**2 &!
 + deta (i,j,k,2)**2 &!

 + deta (i,j,k,3)**2)) &!

 + sqrt(cc2*(dzeta(i,j,k,1)**2 &!

 + dzeta(i,j,k,2)**2 &!

 + dzeta(i,j,k,3)**2))!
 dt(i,j,k) = one/(dt(i,j,k)*detJinv(i,j,k))!

 enddo!

 enddo!

enddo!

Time step per unit volume

Advective

contribution

Acoustic

contribution

Layout of data in CPU memory

type blockType!

...!

! w(il,jl,kl,1:nw): The primitive variables.!

! w(i,j,k,1:nwf) are the flow field!

! variables, rho, u, v, w and p.!

! w(i,j,k,nt1:nt2) turbulent!
! variables; also the primitive!

! variables are stored.!

real(kind=realType), dimension(:,:,:,:), pointer :: w!

...!

end type blockType!

...!

! flowDoms(:,:,:): array of blocks. Dimensions are!

! (nDom,nLevels,nTimeInstancesMax)!

type(blockType), allocatable, dimension(:,:,:), target :: flowDoms!

Layout of data in CPU memory (cont.)

rho u v w p

Layout of a single block in linear memory:

Layout of multiple blocks in linear memory:

rho u v w p rho u v w p …

Block 1 Block 2

Note that the dimensions and total size

 of each block will typically be different

Some observations about data layout

•! Don’t want to make changes in layout that

require modifying preprocessing, MPI

communication, or postprocessing

•! Interop in Fortran 2003 gives us some flexibility

•! It may be beneficial to use a different data layout

on the GPU…

•! But, we need to understand the data sizes and

transfer characteristics to assess cost of

rearranging data

•! Note that as an iterative solver we touch all data

at every RK stage

An appealing data layout option for the GPU

… rho rho u u v v …

•! Allows one kernel launch to easily process

pointwise data for all blocks

•! There is no way to get this data layout via

Fortran interop so data will have to be

rearranged every RK stage if using multiple

GPUs

•! Need to know more to assess the cost

…

•! 15 block meshes with approximately 720,000

and 1.5 million nodes

•! For the latter, the average block size is

approximately 100,000 nodes with a minimum of

10,000 and a maximum of 200,000 nodes

Hypersonic vehicle mesh

Data sizes for a typical mesh

Data transfer between CPU and GPU

A compromise for data layout on the GPU

•! Can use the same data layout on the GPU and

the CPU (via Fortran 2003 interop)

•! One large data transfer between CPU and GPU

is very efficient

•! Will blocks have to be processed sequentially

since the matching variables from multiple blocks

aren’t contiguous?

rho u v w p rho u v w p

Block 1 Block 2

Processing multiple blocks with a single kernel call

__constant__ float* cRhoPtrs[100];!

__constant__ int cBlockSizes[100];!

__global__ void myKernel(int nBlocks)!

{!

 int idx, n, totalVertices = 0, blockSize;!

 float *rho = NULL;!

 idx = blockIdx.x*blockDim.x + threadIdx.x;!

 for (n=0; n<nBlocks; n++)!

 {!

 blockSize = cBlockSizes[n];!

 if (idx - totalVertices < blockSize)!

 {!

 idx -= totalVertices; rho = cRhoPtrs[n]; break;!

 }!

 totalVertices += blockSize;!

 }!

 if (rho)!

 {!

 … !

 }!

}!

Determines pointer to data for this thread

Make sure pointer is valid before

proceeding with computation!

Summary of pointwise kernels

•! Straightforward to write and fairly easy to get good

performance relative to CPU

•! Additional things can be done to handle address

alignment for coalescing (not covered here)

•! Register pressure becomes an issue:

–! Full Euler time step calculation uses 16 32-bit

registers in single precision

–! Things get worse for the rest of the kernels!

–! Good arithmetic intensity is sometimes at odds with

keeping occupancy high

–! May need to split big kernels into smaller kernels

•! Depending on block size and multigrid level
different orders of differencing may be used in
different directions, so each direction is performed
independently
–! Too hard to implement 27 different combinations for

1st through 3rd order alone

–! Lose opportunity for on chip data reuse, but retain
flexibility for handling “thin” blocks

•! The stencil and weights vary near the edge of
blocks

Differencing operations

Stencils for third / fourth order differencing

Central Difference

Stencil and weights are

 different for each of the

 four vertices on the
 boundaries!!

•! The operation can always be expressed as a dot
product of weights and field values specified by a
given stencil

•! A single if/else-if/else branch is used to establish
whether a vertex is in the left set of points, middle,
or right set of points

•! The different stencils and weights associated with
the four boundary cases are read from auxiliary
arrays accessed based on the index of the node
in the differencing direction

•! A dot product is computed using the weights and
the field values accessed by the stencil

Differencing on the GPU

Performance of differencing operations

•! Limited by memory bandwidth because number

 of operations is about the same as number of

 memory references

•! The original CPU implementation does not pad

 the array dimensions so alignment for

 coalescing is an issue (can’t treat this as 1D

 problem like pointwise calculations)

•! 10 series architecture is more flexible in terms of

 coalescing, but extra indexing operations for

 checking alignment definitely helpful

•! Textures can also be useful in this situation

•! Different logically rectangular regions on the face

of a block, called sub-faces, may have different

boundary conditions associated with them

•! The CPU code loops over blocks and then sub-

faces to compute the penalty state for physical

boundary conditions and then the penalty terms,

which weakly enforce the boundary conditions

Boundary terms

2D example of penalty state / terms

x

y

i

j

i

j

i
j

1 penalty state and

1 penalty term

2 penalty states and

2 penalty terms

Can we inline the boundary terms?

•! From a memory access point of view it would be

 convenient to “inline” the boundary terms with

 the volumetric computation

•! But the solver supports about 30 different

 physical boundary conditions:

–! Some are simple (a few lines of code)

–! Some are very complicated (thousands of lines for

 sliding meshes in turbomachinery)

–! Most are somewhere in between

–! In any case, would greatly increase register pressure

•! Not a realistic solution!

•! The CPU approach for boundary terms involves looping
over blocks and then sub-faces

•! Implemented on the GPU this has horrible performance
because with so few values (100s) the computation time
is dominated by the overhead to start kernels

•! Index in the volume data of every node in each sub-face
is pre-computed and used by a kernel to copy the
appropriate data into an array containing surface data

•! Note that a given surface node may appear multiple
times where sub-faces meet at edges and corners!

Boundary terms: copying surface data

•! Groups of physical boundary conditions for the entire surface of a
block are computed at once by using an auxiliary array that
specifies the physical boundary condition for the nodes that are
members of each sub-face

•! All of the penalty terms are computed at once using the same
auxiliary array

•! The penalty terms are returned to the volumetric array by
assigning a thread to each of the vertices in the volume array and:

–! Computing if the vertex is on the boundary (faster to compute
than read in an auxiliary array)

–! If so, looping over the sub-faces and gathering the appropriate
values if it is part of a given sub-face

–! Wastes a lot of threads but makes use of some coalescing

Computing penalty state/terms

Performance on boundary terms

•! Performance for the boundary terms

 (communicating or computing penalty state, and

 the penalty terms) is the major limiting factor in

 overall application performance

–! Typically see 1 to 5x speedup compared to CPU

 (depending on mesh topology)

•! It may be better to simply treat the block surface

 boundaries in a completely unstructured way

 with a list of vertices and connectivity

Summary of code execution

•! The GPU port for the steady solution of the Euler
equations and a few major boundary conditions
(a subset of the full capabilities of NSSUS)
involves approximately:
–! 4,000 lines of GPU code

–! 1,500 lines of new Fortran code

–! 5,000 lines of supporting C code

Complexity of porting

•! CPU:

–! Intel Xeon 5160 (3.0 GHz, 4MB L2 cache)

–! Intel Fortran compiler

•! GPU:

–! NVIDIA Tesla C1060 (240 cores at 1.33 GHz,

4 GB of device memory)

Hardware for performance results

•! NACA 0012 airfoil, Mach 0.63, alpha 2. degrees

Order Multigrid cycle Speed-up

1st single grid 24.5

3rd single grid 18.6

1st 2V 19.3

3rd 2V 18.1

Performance on real meshes

Mesh Multigrid cycle Speed-up

720k single grid 19.3

720k 2V 14.4

1.5M single grid 26.9

1.5M 2V 20.2

Hypersonic vehicle

•! Data layout is very important to achieving good
performance, but it’s very expensive in terms of
developer time to experiment with a large application

•! Suggestions:
–! Profile your code and decide on an overall strategy for using

the GPU:
•! Will you port the entire solver loop? Or just some key kernels?

•! Are you targeting a single GPU or multiple GPUs?

–! Categorize your kernels in terms of data access:
pointwise, stencil, completely irregular, reduction, etc.

•! Experiment with one of each kind to see what works

–! Use your experiments to decide on an overall strategy
and then implement the rest of your kernels

Closing thoughts

