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Challenging Problems in CFD 



Computational Requirements for a Jet Engine Simulation 

•! Entire engine geometry (full wheel): 
 - Extremely large computational grids (about 1 billion cells) 

 - Using 50,000 CPUs, the computational time is about 14 days for each  

   flow-through time 

•! Reduced model: 
 - 20o sector (by scaling the blade counts) ~ 75 millions cells 

 - Coarser grid  ~ 16 millions cells 

 - Using 1000 CPUs (ALC), the computational time is about 10 days 

 - Reduced storage requirements ~ 5 TB 

Source: Center for Integrated Turbulence Simulations (CITS), Stanford University 



Parallel Scaling of SUmb on Red Storm 



•! Solves the Unsteady Reynolds-Averaged Navier-

Stokes (URANS) equations via a finite difference 

formulation on massively parallel platforms 

•! Uses multi-block meshes 

which are a hybrid 

approach that uses 

blocks of structured 

meshes linked in an 

unstructured fashion 

Navier-Stokes Stanford University Solver (NSSUS) 



Multi-block structured mesh 
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•! 1st to 6th order finite difference operators 

•! Boundary conditions are implemented using 

penalty terms based on Summation By Parts 

(SBP) / Simultaneous Approximation Terms (SAT) 

approach 

•! Geometric multigrid with support for irregular 

coarsening of meshes 

NSSUS 



•! GPU work has initially focused on the Euler 

Equations, which come about if the viscous and 

heat transfer terms are neglected 

•! System of non-linear PDEs:  
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Euler Equations 



•! For the finite difference discretization a coordinate 

transformation is made to yield: 
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and J is the coordinate transformation Jacobian 

•! The spatial operators are discretized to generate a 

system of ODEs for each and every node in the 

mesh: 
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Euler Equations (cont.) 



•! An explicit five-stage Runge Kutta scheme is used to 
advance the equations to a steady state 

•! Computing the residual R is the main computational cost 
and includes the inviscid Euler fluxes, the artificial 
dissipation for stability, and the penalty state and penalty 
terms for the boundary terms 

Euler Equations (cont.) 



•! The idea is to port the existing CPU implementation of 
NSSUS to the GPU: 

•! Approximately 200,000 lines of Fortran source code 

•! Most of the lines of code ( > 75% ) are not 
performance critical or not amenable to the GPU 

•! Preprocessing 

•! MPI Communication 

•! Postprocessing 

Porting NSSUS to the GPU 



•! Classification of the kernel types: 
–! Pointwise: All of the memory accesses, possibly from many 

different arrays, are at the same location as the output.  For 
example, computing the momentum from the density and 
velocity. 

–! Stencil: Spatially local data is required, typically one or two 
neighbors in each direction.  This data may or may not be 
contiguous in memory depending on the direction.  Difference 
approximations and multigrid transfer operators are examples 
of this type of access. 

–! Unstructured gather: Outputs gather from arbitrary locations 
in memory.  This occurs when exchanging data used for 
computing block to block penalty terms. 

–! Reductions: Outputs a single scalar by performing a 
commutative operation on an array of data.  Used to monitor 
the convergence of the solution. 

Mapping Algorithms to the GPU 



Simplified Inviscid Time Step Calculation 

do k=1,kl!

  do j=1,jl!

    do i=1,il!
      cc2       = gamma(i,j,k)*w(i,j,k,ip)/w(i,j,k,irho)!

      cc2       = max(cc2,clim2)!

      dt(i,j,k) = abs(w(i,j,k,ivx)*dxi  (i,j,k,1)  &!

                +     w(i,j,k,ivy)*dxi  (i,j,k,2)  &!

                +     w(i,j,k,ivz)*dxi  (i,j,k,3)) &!
                + abs(w(i,j,k,ivx)*deta (i,j,k,1)  &!

                +     w(i,j,k,ivy)*deta (i,j,k,2)  &!

                +     w(i,j,k,ivz)*deta (i,j,k,3)) &!

                + abs(w(i,j,k,ivx)*dzeta(i,j,k,1)  &!

                +     w(i,j,k,ivy)*dzeta(i,j,k,2)  &!
                +     w(i,j,k,ivz)*dzeta(i,j,k,3)) &!

                + sqrt(cc2*(dxi  (i,j,k,1)**2      &!

                +           dxi  (i,j,k,2)**2      &!

                +           dxi  (i,j,k,3)**2))    &!

                + sqrt(cc2*(deta (i,j,k,1)**2      &!
                +           deta (i,j,k,2)**2      &!

                +           deta (i,j,k,3)**2))    &!

                + sqrt(cc2*(dzeta(i,j,k,1)**2      &!

                +           dzeta(i,j,k,2)**2      &!

                +           dzeta(i,j,k,3)**2))!
      dt(i,j,k) = one/(dt(i,j,k)*detJinv(i,j,k))!

    enddo!

  enddo!

enddo!

Time step per unit volume 

Advective 

contribution 

Acoustic 

contribution 



Layout of data in CPU memory 

type blockType!

...!

! w(il,jl,kl,1:nw): The primitive variables.!

!                   w(i,j,k,1:nwf) are the flow field!

!                   variables, rho, u, v, w and p.!

!                   w(i,j,k,nt1:nt2) turbulent!
!                   variables; also the primitive!

!                   variables are stored.!

real(kind=realType), dimension(:,:,:,:), pointer :: w!

...!

end type blockType!

...!

! flowDoms(:,:,:): array of blocks. Dimensions are!

!                  (nDom,nLevels,nTimeInstancesMax)!

type(blockType), allocatable, dimension(:,:,:), target :: flowDoms!



Layout of data in CPU memory (cont.) 

rho u v w p 

Layout of a single block in linear memory: 

Layout of multiple blocks in linear memory: 

rho u v w p rho u v w p … 

Block 1 Block 2 

Note that the dimensions and total size

 of each block will typically be different 



Some observations about data layout 

•! Don’t want to make changes in layout that 

require modifying preprocessing, MPI 

communication, or postprocessing 

•! Interop in Fortran 2003 gives us some flexibility 

•! It may be beneficial to use a different data layout 

on the GPU… 

•! But, we need to understand the data sizes and 

transfer characteristics to assess cost of 

rearranging data 

•! Note that as an iterative solver we touch all data 

at every RK stage 



An appealing data layout option for the GPU 

… rho rho u u v v … 

•! Allows one kernel launch to easily process 

pointwise data for all blocks 

•! There is no way to get this data layout via 

Fortran interop so data will have to be 

rearranged every RK stage if using multiple 

GPUs 

•! Need to know more to assess the cost 

… 



•! 15 block meshes with approximately 720,000 

and 1.5 million nodes 

•! For the latter, the average block size is 

approximately 100,000 nodes with a minimum of 

10,000 and a maximum of 200,000 nodes 

Hypersonic vehicle mesh 



Data sizes for a typical mesh 



Data transfer between CPU and GPU 



A compromise for data layout on the GPU 

•! Can use the same data layout on the GPU and 

the CPU (via Fortran 2003 interop) 

•! One large data transfer between CPU and GPU 

is very efficient 

•! Will blocks have to be processed sequentially 

since the matching variables from multiple blocks 

aren’t contiguous? 

rho u v w p rho u v w p 

Block 1 Block 2 



Processing multiple blocks with a single kernel call 

__constant__ float* cRhoPtrs[100];!

__constant__ int    cBlockSizes[100];!

__global__ void myKernel(int nBlocks)!

{!

  int idx, n, totalVertices = 0, blockSize;!

  float *rho = NULL;!

  idx = blockIdx.x*blockDim.x + threadIdx.x;!

  for (n=0; n<nBlocks; n++)!

  {!

    blockSize = cBlockSizes[n];!

    if (idx - totalVertices < blockSize)!

    {!

      idx -= totalVertices;  rho = cRhoPtrs[n];   break;!

    }!

    totalVertices += blockSize;!

  }!

  if (rho)!

  {!

    … !

  }!

}!

Determines pointer to data for this thread 

Make sure pointer is valid before 

proceeding with computation! 



Summary of pointwise kernels 

•! Straightforward to write and fairly easy to get good 

performance relative to CPU 

•! Additional things can be done to handle address 

alignment for coalescing (not covered here) 

•! Register pressure becomes an issue: 

–! Full Euler time step calculation uses 16 32-bit 

registers in single precision 

–! Things get worse for the rest of the kernels! 

–! Good arithmetic intensity is sometimes at odds with 

keeping occupancy high 

–! May need to split big kernels into smaller kernels 



•! Depending on block size and multigrid level 
different orders of differencing may be used in 
different directions, so each direction is performed 
independently 
–! Too hard to implement 27 different combinations for 

1st through 3rd order alone 

–! Lose opportunity for on chip data reuse, but retain 
flexibility for handling “thin” blocks 

•! The stencil and weights vary near the edge of 
blocks 

Differencing operations 



Stencils for third / fourth order differencing 

Central Difference 

Stencil and weights are

 different for each of the

 four vertices on the
 boundaries!! 



•! The operation can always be expressed as a dot 
product of weights and field values specified by a 
given stencil 

•! A single if/else-if/else branch is used to establish 
whether a vertex is in the left set of points, middle, 
or right set of points 

•! The different stencils and weights associated with 
the four boundary cases are read from auxiliary 
arrays accessed based on the index of the node 
in the differencing direction 

•! A dot product is computed using the weights and 
the field values accessed by the stencil 

Differencing on the GPU 



Performance of differencing operations 

•! Limited by memory bandwidth because number

 of operations is about the same as number of

 memory references 

•! The original CPU implementation does not pad

 the array dimensions so alignment for

 coalescing is an issue (can’t treat this as 1D

 problem like pointwise calculations) 

•! 10 series architecture is more flexible in terms of

 coalescing, but extra indexing operations for

 checking alignment definitely helpful 

•! Textures can also be useful in this situation 



•! Different logically rectangular regions on the face 

of a block, called sub-faces, may have different 

boundary conditions associated with them 

•! The CPU code loops over blocks and then sub-

faces to compute the penalty state for physical 

boundary conditions and then the penalty terms, 

which weakly enforce the boundary conditions 

Boundary terms 



2D example of penalty state / terms 
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Can we inline the boundary terms? 

•! From a memory access point of view it would be

 convenient to “inline” the boundary terms with

 the volumetric computation 

•! But the solver supports about 30 different

 physical boundary conditions: 

–! Some are simple (a few lines of code) 

–! Some are very complicated (thousands of lines for

 sliding meshes in turbomachinery) 

–! Most are somewhere in between 

–! In any case, would greatly increase register pressure 

•! Not a realistic solution! 



•! The CPU approach for boundary terms involves looping 
over blocks and then sub-faces 

•! Implemented on the GPU this has horrible performance 
because with so few values (100s) the computation time 
is dominated by the overhead to start kernels 

•! Index in the volume data of every node in each sub-face 
is pre-computed and used by a kernel to copy the 
appropriate data into an array containing surface data 

•! Note that a given surface node may appear multiple 
times where sub-faces meet at edges and corners! 

Boundary terms: copying surface data 



•! Groups of physical boundary conditions for the entire surface of a 
block are computed at once by using an auxiliary array that 
specifies the physical boundary condition for the nodes that are 
members of each sub-face 

•! All of the penalty terms are computed at once using the same 
auxiliary array 

•! The penalty terms are returned to the volumetric array by 
assigning a thread to each of the vertices in the volume array and: 

–! Computing if the vertex is on the boundary (faster to compute 
than read in an auxiliary array) 

–! If so, looping over the sub-faces and gathering the appropriate 
values if it is part of a given sub-face 

–! Wastes a lot of threads but makes use of some coalescing 

Computing penalty state/terms 



Performance on boundary terms 

•! Performance for the boundary terms

 (communicating or computing penalty state, and

 the penalty terms) is the major limiting factor in

 overall application performance 

–! Typically see 1 to 5x speedup compared to CPU

 (depending on mesh topology) 

•! It may be better to simply treat the block surface

 boundaries in a completely unstructured way

 with a list of vertices and connectivity 



Summary of code execution 



•! The GPU port for the steady solution of the Euler 
equations and a few major boundary conditions 
(a subset of the full capabilities of NSSUS) 
involves approximately: 
–! 4,000 lines of GPU code 

–! 1,500 lines of new Fortran code 

–! 5,000 lines of supporting C code 

Complexity of porting 



•! CPU: 

–! Intel Xeon 5160 (3.0 GHz, 4MB L2 cache) 

–! Intel Fortran compiler 

•! GPU: 

–! NVIDIA Tesla C1060 (240 cores at 1.33 GHz, 

4 GB of device memory) 

Hardware for performance results 



•! NACA 0012 airfoil, Mach 0.63, alpha 2. degrees 

Order Multigrid cycle Speed-up 

1st single grid 24.5 

3rd single grid 18.6 

1st 2V 19.3 

3rd 2V 18.1 

Performance on real meshes 



Mesh Multigrid cycle Speed-up 

720k single grid 19.3 

720k 2V 14.4 

1.5M single grid 26.9 

1.5M 2V 20.2 

Hypersonic vehicle 



•! Data layout is very important to achieving good 
performance, but it’s very expensive in terms of 
developer time to experiment with a large application 

•! Suggestions: 
–! Profile your code and decide on an overall strategy for using 

the GPU: 
•! Will you port the entire solver loop?  Or just some key kernels? 

•! Are you targeting a single GPU or multiple GPUs? 

–! Categorize your kernels in terms of data access: 
pointwise, stencil, completely irregular, reduction, etc. 

•! Experiment with one of each kind to see what works 

–! Use your experiments to decide on an overall strategy 
and then implement the rest of your kernels 

Closing thoughts 


